

 Version 6.18.6

PROTECTPAY® PAYER MANAGEMENT INTERFACE: SEAMLESS PAYMENT INTERFACE (SPI)

Instructions to Interface with ProPay’s ProtectPay Payer Management Interface

©2016 – ProPay Inc. All rights reserved. Reproduction, adaptation, or translation of this document without ProPay Inc.’s prior written permission is prohibited except as allowed under copyright laws. Page 2

Contents

1.0 PROCESSING WITH THE SEAMLESS PAYMENT INTERFACE 4

1.1 Summary of Processing 5

1.2 Best Practices 6

2.0 TESTING AND CERTIFICATION 7

2.1 Troubleshooting and Technical Support 8

3.0 TECHNICAL INTEGRATION 9

3.1 Data Encryption and Decryption 10

3.2 JavaScript handling of cardholder data 12

4.0 REQUEST INTERFACE 13

4.1 Required Parameters 13

4.2 Credit Card Parameters (non-encrypted) 15

4.3 ACH Parameters 16

4.4 Optional Parameters (encrypted) 17

5.0 RESPONSE HANDLING 19

5.1 Decrypting and Parsing the Response Cipher 19

5.2 SPI Transitional Response html 21

©2016 – ProPay Inc. All rights reserved. Reproduction, adaptation, or translation of this document without ProPay Inc.’s prior written permission is prohibited except as allowed under copyright laws. Page 3

The ProtectPay Payer Management Interface: Seamless Payment Interface (SPI) is a Payer Management Interface (PMI) that allows merchants to

maintain a payment page that mirrors the look and feel of their website without storing, transmitting or processing the data that their payment

pages collect. The Seamless Payment Interface is based on an HTTP redirect to enable cross origin browser processes for a client system.

How to use this manual

This manual is designed to facilitate developers in building software solutions to consume the Seamless Payment Interface. It is not written for a

single development platform. It provides basic information required to properly interact with the Seamless Payment Interface.

A developer should have an understanding of Hyper Text Transfer Protocol (HTTP) communication, the consuming of external Web services, Web

Form POST methodology, AJAX request and Advanced Encryption Standard (AES) encryption using the Cipher Block Chaining (CBC) mode of

operation, Cross Origin Resource Sharing (CORS) security standards and creating a Secure Sockets Layer (SSL) connection on the intended

development platform.

While ProPay offers resources and materials that assist in creating and developing software solutions it is the responsibility of the integrating

developer to design and develop his or her own software solution on the intended development platform to make use of and consume the services

offered by ProPay.

Updated manuals can always be found at www.propay.com/Resources.

Additional Resources

 See ProtectPay API Manual for ProtectPay API Methods that are referenced in this manual.

 See ProtectPay API Manual Appendix A for a list of response values returned by ProtectPay.

 See ProtectPay API Manual Appendix B for a list of supported Processors, Gateways and Service Providers.

 See ProtectPay API Manual Appendix C for a list of supported Swipe Devices.

Disclaimer

ProPay provides the following documentation on an “AS IS” basis without warranty of any kind. ProPay does not represent or warrant that ProPay’s

website or the API will operate securely or without interruption. ProPay further disclaims any representation or warranty as to the performance or any

results that may be obtained through use of the API.

Regardless of its cause, ProPay will not be liable to client for any direct, indirect, special, incidental, or consequential damages or lost profits arising

out of or in connection with client’s use of this documentation, even if ProPay is advised of the possibility of such damages. Please be advised that

this limitation applies whether the damage is caused by the system client uses to connect to the ProPay services or by the ProPay services

themselves.

©2016 – ProPay Inc. All rights reserved. Reproduction, adaptation, or translation of this document without ProPay Inc.’s prior written permission is prohibited except as allowed under copyright laws. Page 4

1.0 Processing with the Seamless Payment Interface
The Seamless Payment Interface (SPI) is a Payer Management Interface (PMI) of the ProtectPay Application Programming Interface (API).

ProtectPay ensures the payers’ payment information is collected, updated, and stored in accordance with PCI standards. The SPI enables a

merchant to collect sensitive payment method information by redirecting a payer’s browser to post the sensitive payment method information to a

ProtectPay server for processing without having it traverse the client’s system. This minimizes the merchants PCI compliance requirements and limits

the risk and exposure of the merchant by not handling sensitive payment information, while allowing the customer to experience the payment

process on the merchant’s website.

Important Concepts

 ProtectPay is not a Processor or Gateway; it is a secure collection of sensitive payment data.

 ProtectPay stores data securely for both single and recurring or subsequent payments using industry best practices.

 ProtectPay utilizes a proprietary interface to process transactions through several major gateways, processors and services providers.

 ProtectPay supports swipe transactions through integration of supported swipe devices.

Why the Seamless Payment Interface

Current web browser security standards prevent a web page from requesting resources from a domain other than the domain or origin of the

current page being served (CORS standard). This restriction makes it necessary to perform a redirect in order to provide cross origin browser

processes to provide a seamless payment experience to the payer.

The SPI is only needed when new payment method information must be collected. One of the SPI configuration options is to create a

PaymentMethodId from the payer-entered data. Once a PaymentMethodId has been created for the specified PayerId it can be processed

against using the ProtectPay API directly while maintaining minimal risk, exposure and PCI compliance scope.

SPI Processing Configurations

The SPI can be configured to perform various payment method storage and/or processing requests. These options include:

 Create a Payment Method

 Create and Authorize a Payment Method for a specified amount

 Create and Process a Payment Method for a specified amount

 Authorize a payment method for a specified amount

 Process a payment method for a specified amount

 Authorize a payment method for a specified amount and create a PaymentMethodId only if successful

©2016 – ProPay Inc. All rights reserved. Reproduction, adaptation, or translation of this document without ProPay Inc.’s prior written permission is prohibited except as allowed under copyright laws. Page 5

1.1 Summary of Processing
Using the Seamless Payment Interface will allow a merchant to create his or her own shopping experience. Every page in the checkout process

that a cardholder can see is painted by the merchant who maintains control over every bit of the flow. Here is how it works:

1. A Customer finishes shopping and clicks on a link to check out.

2. Before the customer is able to see the checkout page, the merchant should make a call to the ProtectPay API to Get a Temp Token (See

ProtectPay API documentation)

3. The merchant uses this data to encrypt all of the information that the merchant can know without any input from the cardholder. (See

encryption processes in this manual)

4. The merchant then paints the checkout page. Include the following on that page:

a. The encrypted blob of data (hidden)

b. A reference ID to the temp token (hidden)

c. A submit button with special javascript code shown below

5. When the cardholder clicks submit, execute the special javascript code

a. Client-side validation of the card (16 digits, valid format, all data present on page, etc.)

b. Data is POSTed to the SPI rather than back to the merchant’s server. This POST includes a return URL.

c. Display a ‘Transaction in Progress’ message, spinning wheel, or whatever suits the merchant’s fancy.

6. The SPI follows instructions contained in the POST to process the transaction and potentially save a payment method for future transactions.

(Note, the SPI does NOT do anything to the cardholder browser experience at this point. The browser remains on the checkout page)

7. When the SPI has finished processing, it redirects the cardholder to the return URL it was given.

a. This redirect will contain an encrypted response that should be decrypted by the merchant’s system (See encryption process in this

manual)

8. The merchant displays a ‘success page’ or ‘failure page’ of his or her own design.

©2016 – ProPay Inc. All rights reserved. Reproduction, adaptation, or translation of this document without ProPay Inc.’s prior written permission is prohibited except as allowed under copyright laws. Page 6

1.2 Best Practices
 A PayerId is required when creating a PaymentMethodId. A PayerId can be created using either ProtectPay API method 4.2.1 ‘Create PayerId’

or by using ProtectPay API method 4.7.1 ‘Create TempToken’. Once a PayerId is created it should be associated with the user and used in

subsequent transaction requests instead of creating a new one for each transaction.

 The SPI is only required when creating a PaymentMethodId, or processing payment method information without wanting to store it. Once a

PaymentMethodId is created, subsequent transactions should be processed using the ProtectPay API directly.

 Before form POSTing the payer-entered data to the SPI, the developer should validate the card number against a Mod 10 check using the LUHN

algorithm, and should verify that the card number submitted conforms to rules established for the card type selected. The developer should also

validate the expiration data is not past due and the CVV entered is the correct number of integers. This should be done before the cardholder

submits the request to the SPI to avoid the customer waiting for an SPI response that indicates the card number, expiration date and CVV

entered were incorrect. This will improve the end-user experience by not having to re-enter the information.

 Credit card transactions can take several seconds to process. This is caused by several variables with the gateway, the processor, and the

issuer. There will be a wait during which a cardholder may become impatient. ProPay recommends that developers provide cardholders with a

warning against clicking the back button, or refresh on their browser or pressing the rendered ‘submit’ button while a payment method is

processing. ProPay recommends that developers generate a control that displays such a warning during the period of time it takes to receive a

response.

©2016 – ProPay Inc. All rights reserved. Reproduction, adaptation, or translation of this document without ProPay Inc.’s prior written permission is prohibited except as allowed under copyright laws. Page 7

2.0 Testing and Certification
To improve the customer experience, ProPay requires that developers test their software solutions before receiving credentials to process live

transactions. Doing so ultimately improves the end-user experience so please plan accordingly and develop a timeline that provides for testing

and certification against the ProPay Integration environment. Integrating a developed software solution to the ProPay web integration requires the

following steps:

1. Request API credentials from your sales representative or account manager. By involving him or her in the process, Propay can provide you with

guidance about the methods required for your project’s scope.

2. Design, build, and test your solution using the ProtectPay integration environment.

3. Contact your Project Manager when you believe you are ready to certify. Your PM will go over your integration with you. (This is a relatively

informal process, but one that ensures you’ve covered all your bases.)

4. Request Production (Live) Credentials from your Project Manager.

Production URLs

The Production SPI URL: https://protectpay.propay.com/pmi/spr.aspx

The ProtectPay Production REST base URI: https://api.propay.com/protectpay

The ProtectPay Production SOAP URI: https://api.propay.com/protectpay/sps.svc

The ProtectPay Production WSDL URI: https://api.propay.com/protectpay/sps.svc?wsdl

The ProtectPay Production WSDL single file URI: https://api.propay.com/protectpay/sps.svc?singlewsdl

Test URLs

The Integration SPI URL: https://protectpaytest.propay.com/pmi/spr.aspx

The ProtectPay Integration REST base URI: https://xmltestapi.propay.com/protectpay

The ProtectPay Integration SOAP URI: https://xmltestapi.propay.com/protectpay/sps.svc

The ProtectPay Integration WSDL URI: https://xmltestapi.propay.com/protectpay/sps.svc?wsdl

The ProtectPay Integration WSDL single file URI: https://xmltestapi.propay.com/protectpay/sps.svc?singlewsdl

Live Credentials MUST be kept confidential

https://protectpay.propay.com/pmi/spr.aspx
https://api.propay.com/protectpay
https://api.propay.com/protectpay/sps.svc
https://api.propay.com/protectpay/sps.svc?wsdl
https://api.propay.com/protectpay/sps.svc?singlewsdl
https://protectpaytest.propay.com/pmi/spr.aspx
https://xmltestapi.propay.com/protectpay
https://xmltestapi.propay.com/protectpay/sps.svc
https://xmltestapi.propay.com/protectpay/sps.svc?wsdl
https://xmltestapi.propay.com/protectpay/sps.svc?singlewsdl

©2016 – ProPay Inc. All rights reserved. Reproduction, adaptation, or translation of this document without ProPay Inc.’s prior written permission is prohibited except as allowed under copyright laws. Page 8

2.1 Troubleshooting and Technical Support
Your Project Manager acts as a technical resource during integration and will assist you with trouble shooting problems encountered while you work

on your solution. In an effort to make this possible, you should be prepared to provide the following information when you encounter a problem

during integration:

1. Timestamp of the incident (specify time zone)

2. URI Requests are being made to

3. HTTP Method being used

4. XML/SOAP/JSON data passed to the URI

5. XML/SOAP/REST/HTTP Response received.

Despite all the best preparations, planning and testing there are occasions where errors can occur when transitioning from the testing systems to the

live environment. Providing less information may result in a delay to any technical support questions regarding the Application Programming

Interface. The ProPay Technical Support team can only assist in the troubleshooting of the API and not a client’s software solution when undesired

effects occur in a client’s software solution when consuming the ProtectPay API.

Limitations based on a supported gateway

ProtectPay is works with multiple gateways over which ProPay has no control. As such there are instances where a gateway may return an error with

a transaction passed to it from ProtectPay. These errors are indicated by the 200 series in Appendix.2. If a transaction request returns a 200 series

error ProPay technical support can only troubleshoot that the MerchantProfileId is setup properly according to the specifications found in Appendix

B, and upon request, provide the raw request to and response from the gateway.

Should a client require additional troubleshooting they should contact the Processor Gateway for an explanation of their specific failure. ProPay

Technical Support cannot troubleshoot non ProPay merchant account issues.

©2016 – ProPay Inc. All rights reserved. Reproduction, adaptation, or translation of this document without ProPay Inc.’s prior written permission is prohibited except as allowed under copyright laws. Page 9

3.0 Technical Integration
Secure Sockets Layer (SSL):

ProPay recognizes the importance of handling financial transactions in a secure manner and ensures that ProtectPay offers the best transmission

security available. ProPay ensures that ProtectPay API request information is transmitted using the latest Secure Sockets Layer (SSL) encryption

practices. SSL creates a secure connection between client and server over which encrypted information is sent. ProPay hosts the SSL certificate for

this connection type. Each ProtectPay API method request, regardless of the interface, will negotiate an SSL connection automatically over port

443.

Cross Origin Resource Sharing HTTP Headers

ProPay has added the following HTTP Headers to the response from the SPI prior to its redirecting the cardholder browser:

 Access-Control-Allow-Origin:*

 Access-Control-Allow-Methods:GET,POST,HEAD

This makes it possible for a developer to receive a response from the SPI and perform checks against it before the browser is directed to the client-

side results page. Handling this optional feature is fairly challenging, and should only be considered by more experienced developers.

Authentication and API Methods required to use the SPI

The Seamless Payment Interface uses a single-use working key known as a TempToken for authentication. This requires that ProtectPay API methods

are called prior to a merchant painting his or her checkout page:

 ProtectPay API Method 4.2.1 ‘Create PayerId’ (PayerId may be created in same call as ‘Create TempToken’).

 ProtectPay API Method 4.7.1 ‘Create TempToken’

Temp Tokens are built into the SettingsCipher parameter submitted to the SPI.

TempToken must be kept confidential.

©2016 – ProPay Inc. All rights reserved. Reproduction, adaptation, or translation of this document without ProPay Inc.’s prior written permission is prohibited except as allowed under copyright laws. Page 10

3.1 Data Encryption and Decryption
The ProtectPay Seamless Payment interface requires that much of the data submitted is encrypted. This is in addition to SSL encryption that exists

for all of the parameters. The purpose of this extra encryption is NOT to secure the data in transit (we trust SSL/TLS for that, and in fact the most

sensitive data is not encrypted by anything else.) Instead, this extra encryption is used to establish non-repudiation for the transaction, and to

protect SPI users from the potential that a response from the SPI might be ‘spoofed.’

The type of data to be encrypted into a single SettingsCipher value includes all information that can be known by the processor without any input

from his or her customer. This is important, because it is not appropriate that merchants handle cardholder data if using a ProtectPay Payer

Management Interface. Encryption requires server-side coding, and cardholder data should not touch the merchant’s server.

Encryption Process

Encrypt the Key-Value Pair string using the following method:

1. UTF-8 encode the TempToken string and generate an MD5 hash of it.

2. UTF-8 encode the Key-Value Pair string and encrypt using AES-128 encryption using Cipher Block Chaining (CBC) mode.

a. Set both the key and initialization vector (IV) equal to result from step 1.

3. Base64-encode the result of step 2.

This encrypted value is known as the ‘SettingsCipher’ and will be form POSTed to the SPI along with the cardholder information. The SPI will process

the request and redirect the cardholder’s browser to a response page set by the ‘returnURL’ parameter and form POST the response known as the

‘ResponseCipher’.

Decryption Process

The ‘ResponseCipher’ is encrypted using the same process and TempToken used to encrypt the ‘SettingsCipher’.

1. Base64 decode the response cipher.

2. UTF-8 encode the same TempToken used to encrypt and generate an MD5 hash of it.

3. Decrypt the result of step 1 using AES-128 decryption using Cipher Block Chaining (CBC) mode.

4. Set both the Key and Initialization Vector (IV) equal to result from step 2.

Message Padding

AES 128 Encryption using Cipher Block Chaining requires the size of the message must be a multiple of the cipher block size. In this instance the

block size is the same size as the MD5 Hash of the TempToken which is 16 bytes. Due to the variable nature of the Key-Value Pair that is to be

encrypted, padding may need to be added in order to ensure the resulting message to be encrypted is a multiple of 16 bytes. If the string is

padded in order to be encrypted the decrypted response will need to have any added padding removed before being converted back to a

readable string.

Example Key-Value Pair String before Encryption and Base64 encoding:

AuthToken=1f25d31c-e8fe-4d68-be73-f7b439bfa0a329e90de6-4e93-4374-8633-22cef77467f5

&PayerID=2833955147881261

&Amount=10.00

&CurrencyCode=USD

©2016 – ProPay Inc. All rights reserved. Reproduction, adaptation, or translation of this document without ProPay Inc.’s prior written permission is prohibited except as allowed under copyright laws. Page 11

&ProcessMethod=Capture

&PaymentMethodStorageOption=None

&InvoiceNumber=Invoice123

&Comment1=comment1

&Comment2=comment2

&echo=echotest

&ReturnURL=https://il01addproc.propay.com:443/Return.aspx

&ProfileId=3351

&PaymentProcessType=CreditCard

&StandardEntryClassCode=

&DisplayMessage=True

&Protected=False

*The AuthToken value in the Key-Value pair string is set to the created TempToken and this value is used to encrypt.

Example Key-Value Pair String after Encryption and Base 64 encoding:

WD7n54SPFT4Pa/GdLy5Pg8rKnArxQkVQr+pICmj3Nc+vz8JZ0ugsKiFmiPw5roHKEjV7vaff1k+SG3Sxs1L9yfnnE1uLi/AVP4O1H/vpK+MOfPVFczXQ9TCPYnDT

w+r/A7c6nwUOnbEsO+xF++k0cuqEMGzaQxNV3kJfsGMegBvlzXH56jzZ39/S+p4g3PGbQ7ZP6K/bkF9URyBq2+gaDuEVWt1AF3v69CX7VVy45TTnU/zhCd8

PFLMh83lc0UJp0ZTIM60rMZOCJbGhccSZ6hujW0d4bz5qocpFxVA9lapSilrnKsFGp3a6njOMsFHgZznKgXaEAJmT59M30Uk+ml4uhKuj9Tx8n2DW6b3UVhqIvi

DXn4sXeQ1LXuOTskQJroBQzqrj9RYw/Dw7q2a2ubwr3GYVhq2fI1tZ2ohfFju4j9wRJ33tIIfs5OB0gP8R46Z2JYrWLNPPlh9ZGczrUM7sFplBepsyKlSPnw43zZek+3L

N/+Sr3nmFnxO4sQ1ZasuvxQ1L4auL6LJg1anBZcWkkNXkcFqRLaZ6LlF506t5hjl2xK3Lp8K4z4JJJ7i3

©2016 – ProPay Inc. All rights reserved. Reproduction, adaptation, or translation of this document without ProPay Inc.’s prior written permission is prohibited except as allowed under copyright laws. Page 12

3.2 JavaScript handling of cardholder data
The SPI provides its data security benefit because cardholder data never traverses a merchant’s own website. Instead, it is POSTed directly to a

secure interface hosted by ProPay. (See section 1.1: Summary of Processing) That said, it is perfectly acceptable for client-side code, executed on

the cardholder’s browser, to handle the card prior to its submission via POST. There are several validation steps that you should take with your

JavaScript (or similar) code:

 Make sure the card is of an appropriate length.

 Make sure the card starts with the correct digit based on card type identified.

 Make sure the card number passes a LUHN check

 Make sure none of the other fields (such as cardholder name) contains sensitive card data. If a cardholder includes this data in one of the fields

you paint, and the POST made by his or her browser contains it, ProPay will return an error response. You would be well served to handle the

information up front in order to create a good experience.

 Display a spinning wheel, “Do Not Press Back Button” or similar message for the customer to view prior to the redirect that the SPI initiates.

 Disable the browser’s back button.

 Disable a second click of the submit button you served up.

©2016 – ProPay Inc. All rights reserved. Reproduction, adaptation, or translation of this document without ProPay Inc.’s prior written permission is prohibited except as allowed under copyright laws. Page 13

4.0 Request Interface

4.1 Required Parameters
Element Name Type Max Required Notes

CID Int32 - Required The ‘CredentialId’ of the Temp Token used to encrypt the settings cipher

SettingsCipher string - Required
The SettingsCipher is the encrypted value of the parameters that cannot be changed by the cardholder

See 3.2.3 Required Encrypted Parameters

Additionally, either ACH or Credit Card optional parameter group must be included.

Required Encrypted Parameters (These values are used to build the SettingsCipher)

Parameter Type Max Notes

AuthToken string - Returned by ‘Get a Temp Token’ API call as “TempToken”

PayerID long -
Returned by ProtectPay API Method ‘Create PayerId’ as “ExternalAccountId”

Returned by ProtectPay API Method ‘Create TempToken’ as “PayerId”

PaymentProcessType String -

Valid values are:

 ACH

 CreditCard

ProcessMethod String - (see below)

PaymentMethodStorageOption String - (see below)

CurrencyCode String 3 ISO 4217 standard 3 character currency code

Amount long -
The value representing the amount the for which the transaction should be processed

*This amount must include a decimal point followed by two digits

InvoiceNumber string 50

Recommended Transaction descriptor-only passed if supported by your gateway

*ProPay rejects transactions as duplicate when the same card is charged for the same amount with the same

invoice number, including blank invoices, in a 60 second period.

ReturnURL string -
Fully Qualified URL to direct client browser to redirect to when response is received

*The URL cannot contain query string parameters, an error will be returned indicating an invalid SettingsCipher

Configuring Functionality

The values shown above, PaymentMethodStorageOption, and ProcessMethod are used to define the action the SPI will perform. Consider the

following possible combinations:

Desired behavior PaymentMethodStorageOption ProcessMethod

Use SPI only to store a payment method Always None

Use SPI to Process a payment without storing the payment method None Capture

Use SPI to Authorize a payment without storing the payment method None AuthOnly

Use SPI to Process and store a payment method Always Capture

©2016 – ProPay Inc. All rights reserved. Reproduction, adaptation, or translation of this document without ProPay Inc.’s prior written permission is prohibited except as allowed under copyright laws. Page 14

Use SPI to Authorize and store a payment method Always AuthOnly

Use SPI to attempt a payment and store only if successful OnSuccess Capture

Use SPI to attempt an authorization and store only if successful OnSuccess AuthOnly

©2016 – ProPay Inc. All rights reserved. Reproduction, adaptation, or translation of this document without ProPay Inc.’s prior written permission is prohibited except as allowed under copyright laws. Page 15

4.2 Credit Card Parameters (non-encrypted)
Element Name Type Max Required Notes

CardHolderName string 50 Required The name on the card

PaymentTypeId string - Required

Valid values are:

 Visa

 MasterCard

 AMEX

 Discover

 DinersClub

 JCB

CardNumber string 16 Required *You should perform your own validation of card numbers lengths which are generally 15 or 16 digits

ExpMonth Int32 2 Required Month portion of credit card expiration date expressed in a 2 digit format

ExpYear Int32 4 Required Year portion of credit card expiration date expressed in a 2 digit format

CVV string 4 Optional
Card security code

ProtectPay will NOT store this value

Element Name Type Max Required Notes

Address1 string 50 Optional Payer’s address line 1; if your gateway supports AVS this value will be passed for AVS

Address2 string 50 Optional Payer’s address line 2; if your gateway supports AVS this value will be passed for AVS

Address3 string 50 Optional Payer’s address line 3; if your gateway supports AVS this value will be passed for AVS

City string 25 Optional Payer’s address city; if your gateway supports AVS this value will be passed for AVS

State string 25 Optional Payer’s address state; if your gateway supports AVS this value will be passed for AVS

PostalCode string 10 Optional Payer’s address postal code; if your gateway supports AVS this value will be passed for AVS

Country string 25 Optional
Payer’s address country; if your gateway supports AVS this value will be passed for AVS

*ISO 3166 standard 3 character country codes

©2016 – ProPay Inc. All rights reserved. Reproduction, adaptation, or translation of this document without ProPay Inc.’s prior written permission is prohibited except as allowed under copyright laws. Page 16

4.3 ACH Parameters
Encrypted Values

Element Name Type Max Required Notes

StandardEntryClassCode
Strin

g
- Required

Standard Entry Class Code required for ACH Payment Processing Valid values are:

 PPD

 CCD

 WEB

 TEL

Non-Encrypted Values

Element Name Type Max Required Notes

BankName string - Optional
The name of the financial institution

*Recommended this be collected

RoutingNumber string - Required The routing number of the financial institution

Bank CountryCode string 3 Required
The country of the financial institution

*ISO 3166 standard 3 character country codes

NameOnBankAccount string 50 Optional The primary name on the account

Bank AccountNumber string Required The account number at the financial institution

BankAccountType string - Required

Valid values are:

 Checking

 Savings

StandardEntryClassCode string - Required

Valid values are:

 PPD

 CCD

 WEB

 TEL

 IAT

©2016 – ProPay Inc. All rights reserved. Reproduction, adaptation, or translation of this document without ProPay Inc.’s prior written permission is prohibited except as allowed under copyright laws. Page 17

4.4 Optional Parameters (encrypted)
SessionId string Session id for ThreatMetrix

InputIpAddress string Input IP Address for AmexEnhancedauth and ThreatMetrix

ShippingAddress1 string Shipping Address1 for AmexEnhancedauth and ThreatMetrix

ShippingAddress2 string Shipping Address2 for AmexEnhancedauth and ThreatMetrix

ShippingCity string Shipping City for AmexEnhancedauth and ThreatMetrix

ShippingState string Shipping State for AmexEnhancedauth and ThreatMetrix

ShippingZip string Shipping Zip for AmexEnhancedauth and ThreatMetrix

ShippingCountry string Shipping Country for AmexEnhancedauth and ThreatMetrix

ShippingFirstName string Shipping First Name for AmexEnhancedauth and ThreatMetrix

ShippingLastName string Shipping Last Name for AmexEnhancedauth and ThreatMetrix

ShippingPhoneNumber string Shipping Phone Number for AmexEnhancedauth and ThreatMetrix

ShippingMethod Shipping Method for AmexEnhancedauth

CUA1 string This is optional ThreatMetrix parameter CustomAttribute1

CUA2 string This is optional ThreatMetrix parameter CustomAttribute2

CUA3 string This is optional ThreatMetrix parameter CustomAttribute3

CUA4 string This is optional ThreatMetrix parameter CustomAttribute4

CUA5 string This is optional ThreatMetrix parameter CustomAttribute5

CUA6 string This is optional ThreatMetrix parameter CustomAttribute6

CUA7 string This is optional ThreatMetrix parameter CustomAttribute7

CUA8 string This is optional ThreatMetrix parameter CustomAttribute8

CUA9 string This is optional ThreatMetrix parameter CustomAttribute9

CUA10 string This is optional ThreatMetrix parameter CustomAttribute10

CA1 string This is optional ThreatMetrix parameter ConditionalAttribute1

CA2 string This is optional ThreatMetrix parameter ConditionalAttribute2

CA3 string This is optional ThreatMetrix parameter ConditionalAttribute3

CA4 string This is optional ThreatMetrix parameter ConditionalAttribute4

CA5 string This is optional ThreatMetrix parameter ConditionalAttribute5

CA6 string This is optional ThreatMetrix parameter ConditionalAttribute6

CA7 string This is optional ThreatMetrix parameter ConditionalAttribute7

CA8 string This is optional ThreatMetrix parameter ConditionalAttribute8

CA9 string This is optional ThreatMetrix parameter ConditionalAttribute9

CA10 string This is optional ThreatMetrix parameter ConditionalAttribute10

©2016 – ProPay Inc. All rights reserved. Reproduction, adaptation, or translation of this document without ProPay Inc.’s prior written permission is prohibited except as allowed under copyright laws. Page 18

CA11 string This is optional ThreatMetrix parameter ConditionalAttribute11

CA12 string This is optional ThreatMetrix parameter ConditionalAttribute12

CA13 string This is optional ThreatMetrix parameter ConditionalAttribute13

CA14 string This is optional ThreatMetrix parameter ConditionalAttribute14

CA15 string This is optional ThreatMetrix parameter ConditionalAttribute15

CA16 string This is optional ThreatMetrix parameter ConditionalAttribute16

CA17 string This is optional ThreatMetrix parameter ConditionalAttribute17

CA18 string This is optional ThreatMetrix parameter ConditionalAttribute18

CA19 string This is optional ThreatMetrix parameter ConditionalAttribute19

CA20 string This is optional ThreatMetrix parameter ConditionalAttribute20

CreditCardNumberHash string CreditCard Number Hash for ThreatMetrix

SocialSecurityNumberHash string SocialSecurityNumber Hash for ThreatMetrix

ACHAccountHash string ACHAccount Hash for ThreatMetrix

DriversLicenseHash string DriversLicenseHash for ThreatMetrix

Policy string Policy for ThreatMetrix

IsThreatMetrix bool True if ThreatMetrix Fraud detection is required, else false

IsAmexEnhancedAuth bool True if Amex enhanced Auth is required , else false

ProfileId long -
Used to specify merchant account when your biller ID has access to multiple merchant accounts

*If your account is set to point to multiples this value is required

Comment1 string 128
Transaction descriptor. Only passed if supported by your gateway

*The following characters cannot be passed: “?”|”&”|” =”

Comment2 string 128
Transaction descriptor. Only passed if supported by your gateway

*The following characters cannot be passed: “?”|”&”|” =”

echo string -
*Optional value that is not passed to gateway and is returned in the response

*The following characters cannot be passed: “&”|”=”

Protected bool -
True or False required if storing the payment method

*Indicates whether a stored payment method can be deleted by the payer

Using Fraud Detection

The Seamless Payment Interface supports multiple Fraud Detection Provider options. Elements listed above are also supported by the ProtectPay

API and while all are optional parameters, use of a fraud solution makes some values required as a group. Each Fraud Provider has a unique set of

required and optional variables. Please view Fraud solutions documentation for further details.

Note: browsers have differing limits imposed upon the number of characters allowed in query-string submission. As such it is highly recommended

that, if using a Fraud Detection solution with the SPI, the developer submits via Form POST rather than query string.

©2016 – ProPay Inc. All rights reserved. Reproduction, adaptation, or translation of this document without ProPay Inc.’s prior written permission is prohibited except as allowed under copyright laws. Page 19

5.0 Response Handling

5.1 Decrypting and Parsing the Response Cipher

Response Cipher – Raw Data

Element Name Value

ResponseCipher

irvN4mdV6jA0wmsSVq8yHv3F+2frLchvQpTuJj1r8lBMmYhP8ZJ5TmVGbdm1vPm91UEW3m89IgfgM5R+HjF8jwzskTX4sRExSbDv3szDdwRyUnAT9neieDJ

DXzdCmG6/+FhxIN/Lai0Dg5s7lWfGsl+xNmsTr/4yQ//btMl1u6AM+Jyi2+tBwGPgjMgrG5hjnqpbKwsd5k7yELDdCQHLzkjFagKjYMyfXgaRlHX7rNBpiQSK

qmhESZm/XrktySfOrf80jFQtUZq0iSHxVr83W55/QGhH0TFs+avcP4yVJPuwCju2bH0Kkd6m3QtclygPM29mc2xIyIxl/8SB3bgJ8ESwWJCImIvqXJa1rcSO8y

5UYkn+QL5cI9iuAaEhGjlwoC3q/q6F9kQrSlnV4ExymTio0VLFUSN4Sx6GjV5E2ITT25ypspkp05FvQPZnp+8S

Response Cipher – Decrypted and Parsed

Name Type Notes

Action string
“Complete” indicates the request was completed

“Err” indicates one or multiple errors with the transaction request

ErrCode String
Numeric Code returned only when Action=Err. This indicates a problem with the SPI Request

*Multiple ErrCode values may be returned. Example: ErrCode1 =, ErrCode2 =, …

ErrMsg String
Text detail returned only when there Action=Err. This indicates a problem with the SPI Request

*Multiple ErrCode values may be returned. Example: ErrMsg1 =, ErrMsg2 =, …

echo String *Returned only if submitted

ProcessResult String *Result of transaction processing request

ProcessResultResultCode String Result Code of transaction request *Not returned if there was an error processing the transaction request

ProcessResultResultMessage String
Result text description of transaction request *Not returned if there was an error processing the transaction request or

if the ProcessResultResultCode=00

ProcErrCode string
Processing Error Code for transaction Processing *Only returned if there was an error processing the transaction

request

ProcErrMsg string
Processing Error text description for transaction *Only returned if there was an error processing the transaction

request

StoreErrCode string Storage Error Code for transaction Processing *Only returned if there was an error storing the payment method

StoreErrMsg string Storage Error text description for transaction *Only returned if there was an error storing the payment method

ProcessResultAuthorizationCode string The auth code supplied by the issuing bank *Only returned on a successful transaction

ProcessResultCvvCode string
The issuer CVV response *Only returned if supplied *ProtectPay WILL NOT store the CVV code of a Credit Card

Payment Method

ProcessResultAVSCode string
AVS response produced by gateway *Only returned if AVS information is supplied and AVS is supported by your

gateway

PayerId string Id of the payer that is the owner of the payment method

©2016 – ProPay Inc. All rights reserved. Reproduction, adaptation, or translation of this document without ProPay Inc.’s prior written permission is prohibited except as allowed under copyright laws. Page 20

PaymentMethodId string *Only returned if a payment method was stored as defined by PaymentMethodStorageOption

CardholderName string *Returned only for credit card transactions

ObfuscatedAccountNumber string *Returned only for credit card transactions obfuscated for security

ExpireDate string *Returned only for credit card transactions

Address1 string *Returned only for credit card transaction.

Address2 string *Returned only for credit card transactions

Address3 string *Returned only for credit card transactions

City string *Returned only for credit card transactions

State string *Returned only for credit card transactions

PostalCode string *Returned only for credit card transactions

Country string *Returned only for credit card transactions

BankName string *Returned only for ACH transactions

ProcessResultTransactionHistoryID string Unique transaction number assigned by ProtectPay

ProcessResultTransactionId string Transaction number assigned by processor (Gateway)

GrossAmt string Gross amount of transaction repeated back to you

NetAmt string Net amount of transaction after fees charged; *ProPay Gateway Only

PerTransFee string Per transaction fee ; *ProPay Gateway Only

Rate string Percentage fee ; *ProPay Gateway Only

GrossAmtLessNetAmt string Total of fees; *ProPay Gateway Only

*Not all values are returned. See the individual notes for each response value.

Possible Error Responses
ErrCode=301&ErrMsg= Invalid CID

 The TempToken has expired

 The CID is an invalid CID

 The SPI did not get the CID value from the request

ErrCode=301&ErrMsg= Invalid SettingsCipher

 The SPI was able to acquire the CID and the SettingsCipher is improperly encrypted

 The SPI was able to acquire the CID and the SettingsCipher is improperly encoded in the request

 The SPI was able to acquire the CID However the SPI is unable to get the SettingsCipher value from the request

ErrCode=348&ErrMsg= Invalid SettingsCipherLength

 Query string exceeded max length of characters allowed. Reduce the number of characters submitted, use a form POST, or switch to the Hosted Payment Page.

©2016 – ProPay Inc. All rights reserved. Reproduction, adaptation, or translation of this document without ProPay Inc.’s prior written permission is prohibited except as allowed under copyright laws. Page 21

5.2 SPI Transitional Response html
The following html is returned if there were no errors in submitting the payment method details to the SPI. The clients browser will read interpret the

HTML and execute the Script if the request was form POSTed. If the request was submitted via AJAX instead of a form POST the request the response

is identical without the script being executed.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!—(c)2016-ProPay -->

<html xmlns="http://www.w3.org/1999/xhtml" >

 <head>

 <title></title>

 </head>

 <body>

 <form method="post" action="spr.aspx" id="form1">

 <div class="aspNetHidden">

 <!--The SPI supports View States -->

 <input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE" value="" />

 </div>

 <div class="aspNetHidden">

 <!--The SPI supports Event Validation -->

 <input type="hidden" name="__EVENTVALIDATION" id="__EVENTVALIDATION" value="" />

 </div>

 <div></div>

 <!--The ResponseCipher prior to be Form POSTed to the ReturnURL -->

 <input name="ResponseCipher" type="hidden" id="ResponseCipher" value="" />

 </form>

 </body>

</html>

<script type="text/javascript">

 //The action will be the returnURL in the SettingsCipher

 document.forms[0].action='https://il01addproc.propay.com/Return.aspx';

 document.forms[0].submit();

</script>

Sample Transitional Response html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

 <head>

 <title></title>

 </head>

 <body>

 <form method="post" action="spr.aspx" id="form1">

 <div class="aspNetHidden">

 <input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE" value="" />

 </div>

 <div class="aspNetHidden">

 <input type="hidden" name="__EVENTVALIDATION" id="__EVENTVALIDATION" value="

/wEdAAKvVXD1oYELeveMr0vHCmYPexh68czOUCZr7Ag7DJmz7Z+a1vpqAoNCsL3bMp63kqR0V0mUiq3TIIVw+e5c39X2" />

 </div>

©2016 – ProPay Inc. All rights reserved. Reproduction, adaptation, or translation of this document without ProPay Inc.’s prior written permission is prohibited except as allowed under copyright laws. Page 22

 <div></div>

 <input name="ResponseCipher" type="hidden" id="ResponseCipher"

value="irvN4mdV6jA0wmsSVq8yHv3F+2frLchvQpTuJj1r8lBMmYhP8ZJ5TmVGbdm1vPm91UEW3m89IgfgM5R+HjF8jwzskTX4sRExSbDv3szDdwRyUnAT9neieDJDXzdCmG6/+FhxIN/Lai0Dg5s7lWfGs

l+xNmsTr/4yQ//btMl1u6AM+Jyi2+tBwGPgjMgrG5hjnqpbKwsd5k7yELDdCQHLzkjFagKjYMyfXgaRlHX7rNBpiQSKqmhESZm/XrktySfOrf80jFQtUZq0iSHxVr83W55/QGhH0TFs+avcP4yVJPuwCju2bH0

Kkd6m3QtclygPM29mc2xIyIxl/8SB3bgJ8ESwWJCImIvqXJa1rcSO8y5UYkn+QL5cI9iuAaEhGjlwoC3q/q6F9kQrSlnV4ExymTio0VLFUSN4Sx6GjV5E2ITT25ypspkp05FvQPZnp+8S" />

 </form>

 </body>

</html>

<script type="text/javascript">

 document.forms[0].action='https://il01addproc.propay.com/Return.aspx';

 document.forms[0].submit();

</script>

